Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Engineering design is undergoing a transformative shift with the advent of AI, marking a new era in how we approach product, system, and service planning. Large language models have demonstrated impressive capabilities in enabling this shift. Yet, with text as their only input modality, they cannot leverage the large body of visual artifacts that engineers have used for centuries and are accustomed to. This gap is addressed with the release of multimodal vision-language models (VLMs), such as GPT-4V, enabling AI to impact many more types of tasks. Our work presents a comprehensive evaluation of VLMs across a spectrum of engineering design tasks, categorized into four main areas: Conceptual Design, System-Level and Detailed Design, Manufacturing and Inspection, and Engineering Education Tasks. Specifically in this paper, we assess the capabilities of two VLMs, GPT-4V and LLaVA 1.6 34B, in design tasks such as sketch similarity analysis, CAD generation, topology optimization, manufacturability assessment, and engineering textbook problems. Through this structured evaluation, we not only explore VLMs’ proficiency in handling complex design challenges but also identify their limitations in complex engineering design applications. Our research establishes a foundation for future assessments of vision language models. It also contributes a set of benchmark testing datasets, with more than 1000 queries, for ongoing advancements and applications in this field.more » « lessFree, publicly-accessible full text available September 1, 2026
-
null (Ed.)Abstract This paper studies the concept of manufacturing systems that autonomously learn how to build parts to a user-specified performance. To perform such a function, these manufacturing systems need to be adaptable to continually change their process or design parameters based on new data, have inline performance sensing to generate data, and have a cognition element to learn the correct process or design parameters to achieve the specified performance. Here, we study the cognition element, investigating a panel of supervised and reinforcement learning machine learning algorithms on a computational emulation of a manufacturing process, focusing on machine learning algorithms that perform well under a limited manufacturing, thus data generation, budget. The case manufacturing study is for the manufacture of an acoustic metamaterial and performance is defined by a metric of conformity with a desired acoustic transmission spectra. We find that offline supervised learning algorithms, which dominate the machine learning community, require an infeasible number of manufacturing observations to suitably optimize the manufacturing process. Online algorithms, which continually modify the parameter search space to focus in on favorable parameter sets, show the potential to optimize a manufacturing process under a considerably smaller manufacturing budget.more » « less
An official website of the United States government
